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ABSTRACT
This report is intended to expand the applicability of positive kernel theory

to probabilistic settings and stochastic integrals. The main result states that
if a(t) is a positive kernel, and {B(t) : t > 0} a Brownian motion, then

T t b

1 2

(*) [ &) [ a-vE(ds(as(e) + 5 a0 [ [gw)|%at > 0, a.s.

0] 0 0
for every stochastic process {g(t) : t > 0} which has a stochastic differential
dE(t) with respect to B(t), and for every T > 0. The implication of (*) con-

cerning energy estimates for certain Ito-Volterra equations is discussed, and

examples are provided.
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SIGNIFICANCE AND EXPLANATION

A concept useful in establishing the stability of a solution to
certain linear and non-linear integral equations is that of a positive
kernel. This is a function a(t) such that

T 7.

(*) [ x(t) [ a(t-t)x(1)dtdt > 0

0 0
for every continuous function x(t) and every T > 0. For example, if
A > 0 then e £ is a positive kernel. We show that this concept
generalizes to a probabilistic setting, where stochastic integrals are
used. But the analogous estimate (*) no longer holds. There is a sig-~
nificant correction term that must be added to the left side of (¥*).
We provide this term, and consider its implication concerning energy
estimates for certain stochastic integral equations. The one-dimensional

linear homogeneous stochastic differential equation serves as an illus-~

trative example.

{

The respoﬁgibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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POSITIVE KERNELS AND STOCHASTIC INTEGRALS

Marc A. Berger

INTRODUCTION

In the theory of Volterra equations of the form

t
(V)

x(t) + [ al(t-T)g(x(1))dt = £(t); t >0
0

a concept useful for studying stability is that of a positive kernel

a(t). This is
one for which

T \2

f x(t) f a(t-t)x(t)dtdt > 0
0 0
for every x(t) € C[0,»),

and for every T > O.

A discussion of such kernels, and

their implications concerning the stability of (V), appear in a large number of places,

including MacCamy and Wong (4], and Nohel and Shea [5].

Let a(t) be a positive kernel. Then if F(t) € Cl[O,“)

T T

[ x(t) [ a(t-1)x(1)dF(1)@F(t) > O
0 0 g

for every x(t) € Cl[0,»), and for every T > 0. To extend the setting a bit,

If {G(t) : t > 0} is an a.s. differentiable
process, then

let
(2,F,P) be a probability space.

(*)

T t
[ &) [ a(t-1)E(1)dG(1)dG(t) > 0, a.s.
0 0

for every a.s. continuous stochastic process {E(t) : t > 0},

and for every T > O.
Suppose now that there is a Brownian motion {B8(t)

: £t >0} on (R,F,B). We
consider the stochastic integral

T
1_(T:6) = /

t
£(t) [ a(t-1)E(T)AB(T)AB(t); T >0
0 0

Sponsored by the United States Army under Contract No. DAAG29-75-C~0024 and the
National Science Foundation under Grant No. MCS75-17385 AOl.
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where {&(t) : t 2 oF is a nonanticipating and a.s. continuous stochastic process.
If it was possible to interpret the stochastic integral as a classical Stieltjes

integral, then (*) would be valid with G(t) = B(t). But of course, this is not so.

In fact the estimate (*) no longer holds. For if a(t) = 1 then
T a
1 2 1 2
I (T;8) == |f ewapw)|® - = |E(t)|“at, a.s.; T>0.
a 2 0 2 0 =

What is true, however, is that whenever a(t) is a positive kernel
1 x 2
I_(T;6) +> a0 [ [ew)[“at > 0, a.s.
a 2 0 -

for every T > 0. This is the content of the theorem in §1. The precise technical
hypotheses on a(t) and £(t) are also provided in §1. 1In §2 we present an

estimate concerning solutions of
€
£(t) + [ a(t-1)g(E(T))AB(T) = £(t); t >0
0

when they exist.
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§l. Basic Estimate
Let (2,7,P) be a probability space with a Brownian motion {B(t) : t > 0}.
Let S be the space of real-valued functions af(t) e cl[o,w) such that
o ety ¢ Bhiguol for all A > 0. B funekisn AN #E s #aid to Be of
positive type if
T t J
(1.1) [ xt) [ a(t-t)x(t)drat > 0
0 (0] 1
for every real-valued function x(t) € C[0,®), and for every T > 0. For a
discussion and characterization of functions of positive type, and some illustrative
examples, the reader is referred to MacCamy and Wong [4], and Nohel and Shea [5].
Theorem:
Let a(t) € S be of positive type. Then
T t T
(1.2) [ e@) [ aengmasmase) +3a© [ |ew|%ae >0, as.
[¢] 0 0
for every real-valued stochastic process {£(t) : t > 0} which has a stochastic
differential df(t) with respect to B(t), and for every T > O.
The proof of this theorem relies on the following three results.
Lemma 1 (Correction Formula):

Let {¢(t,t) : 0 < 1T <t < T} be a real-valued t-nonanticipating stochastic

process which has a stochastic differential 3T¢(T,t) with respect to B(t), and

satisfies
k. 2 T
(1.3) [ | letr,t)|“dtat < », a.s.; [ |é(t,t)|dt <=, a.s.
) 0
Then
T =z T % T
(1.4) [ [ etr,0)ag()as(r) = [ [ o(r,t)aB(r)aB(t) + [ ¢(t,t)dt, a.s.
0 0 0 0
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Let 1 ={z€ ©: Re z > 0}. If a(t) € S is of positive type, then

a(z) >0 for z€ I, where

Lemma 3:

If a(t) € Ll(-w,w) is an even function, then for a.e. t € (-»,w)
gk
(1.6) a(t) = % | efatinar .
-0

Lemma 1 can be found in Berger [1], or Berger and Mizel [3]. The definitions
of t-nonanticipating, 3T¢(T,t) and the two double integrals in (1.4) are also
provided there. Lemma 2 can be found in Nohel and Shea [5]. Lemma 3 can be
proved directly from the Fourier Inversion Formula,

Proof of Theorem:

Following Nohel and Shea [5) extend a(t) evenly to (-®,®); that is,

af{t) = a(-t), t < 0. And define ax(t) € Ll(—“,m), for X > 0, by

-2 t]

ax(t) = e a(t),t € (-»,»). Let

T i
(1.7) E () = [ e maB(n); te (-=,@ .
= 0
By Lemma 1, for T > 0
b ¢ t 1 T 2
(1.8) [ &) [ at-mE(naB(Ias(t) + 3 a(0) [ lewr]%at = o (1:8), a.s.
0 0 0 %

where

(1.9) Q,(T:8) =

N

o o T
[ &) [ a(t-1)E(T)AB(T)dB(t); T > O -
0 0

Using the fact that (see Berger and Mizel [3])

(1.10) lim sup [Iax(t) -a)] + |aj(e) - a'(t)[1=0; T>0
A0 0<t<T 1
-4~
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and Lemma 3, it follows that

T T
Q (T;€) = % lim [ &(t) [ a, (t=1)E(T)dB(T)dB(t), a.s.
& A+0 O 0
1 z T " isteery
(1.11) =2=uim | ztex [ i e a(x + is)ds]E(1)dB(T)dB(t), a.s.
T x40 0 0 -®

o
1 ~ A
= 5, lim [ |t (s)lza(X + is)ds, a.s.
n T
A4g =~

Thus, by Lemma 2, Qa(T;E) >0, a.s. for every T > 0. And the result is

apparent now from (1.8). .
We note that from the more general version of the Correction Formula which

appears in Berger and Mizei [3], one obtains a generalization of (1.2) to

continuous martingales {y(t) : t > 0}. Namely,

7 € T
(1.12) [ &) [ a(t-T)E(T)ay(T)dy(t) + % a0 [ e |2acy,y) >0, wem.
0 0 0




§2. Ito-Volterra Equations

We consider next the Ito-Volterra equation
£ t
(I-v) E(t) + [ o(t-1)g(E(T))AB(T) + [ b(t-1)E(T)dT = v(t); t >0
0 0

In Berger [1] existence and uniqueness of a solution to (I-V) is established under
the hypotheses

(al) sup |o(t)| = H0||T< ©, sup |b(t)]| = ”b|Lr< CTI R0
0<t<T 0<t<T

(a2) g(x) 1is Lipschitz continuous on IR, and there exists a constant K > 0

such that for all x € IR

(2.1) lgxr |2 < k1 + |x]|?
(ay) sup Eoer]? < = T>0
0<t<T

Let b*(t) be the resolvent kernel for b(t). That is, b*(t) satisfies
£
(2.2) b*(t) + [ b(t-T)b*(T)dT = b(t); t >0 .
0

Then (I-V) can be put in the form

t
(2.3) E(t) + [ a(t-1)g(E(T))dB(T) = £(t); t >0
0
where
€
a(t) = o(t) - [ b*(t-T)a(t)dt; t >0
0
t
(2.4) £(t) =w(t) - [ b*(t-1)e(1)dr; t >0 .
0

For the linear case, g(x) = x, the solution E£(t) can be written in terms of
a resolvent kernel, as is done in Berger [l], and Berger and Mizel [2]. The

result is

t
(2.5) E(t) = £(t) + [ k(t,t)E(T)da(t), a.s.; t >0
0




where
a(t) = B(t) + a(0)t; t >0

(2.6) k(r,£) = ] (D% (1,8); O0<t<t
n=1

£
k (T,8) = a(e=1), k. (1,8) = [ a(t-s)k (s,T)dB(T), n=1,2,...; 0<T<t.

%

The definition of the integral on the right of (2.5) can be found in Berger (1};
or Berger and Mizel [2] or [3].
Corollary:

Let a(t), given by (2.4), belong to S, and let ¢£(t) be a solution to
(I1-v). If a(t) is of positive type, then

T T

(2.7) g (E(R)) [E(Y) - £(£)1AB(E) < 3 a(0) g late () |%at, a.s.

for every T > 0, where f£(t) is given by (2.4). Similarly, if -a(t) is of

positive type, then

T T

(2.8) [ g(E(®)) [E(E)-£(t) 1dB () 3%3(0) [ lgte(e))|%ae, a.s.
0 0

for every T > 0..

Proof: Both (2.7) and (2.8) follow directly from {(2.3) and (1.2). .

As an example, consider the stochastic differential equation
dg(t) = -ug(t)dB(t) - AE(t)dt; t >0
(2.9) £(0) = c .
This equation can be written in the form (2.3) with

-t At;

(2.10) a(t) = e '°, f(t) = ce a0 .

If ¥ >0 and X > 0 then al(t) is of positive type, and the corollary provides

the estimate

b 1 o D)
(2.11) [ swrew - genadey <5 [ lEw %, aus.
0 0

for every T > O.

=




As another example, consider the pair of stochastic differential equations
Qg (t) = -pE(t)dB(t) - AE(t)dt; t > 0
ak(t) = -pE(t)as(t) ~ XE(t)dt + aflt)dt; t > 0
E(0) =c, £(0) =¢&.
These equations can be combined and written in the form (2.3) where a(t) and f(t)
are both solutions of the differential equation

(2.13) X" (t) + Ax'(t) + adx(t)

1
o
-
(ad
|v
o

with initial conditions

(2.14) a(0) = u, a'(o) = -Afi; f£(0) =c, £'(0) = -Ac .
Bt =00 A > 0 12 < 4aa, Ay = 2Ai then a(t) is of positive type, and the
corollary provides the estimate (2.11) for every T > O.

As a final example, consider the integro-differential equation (see Berger [1])
t t
(2.15)  @E(t) = [ o(t-T)g(E(1))AB(T)1AB(t) + [ b(t-t)g(E(1))dtldt; t > 0
0 0

£§(0) = ¢
If o(t) and b(t) are both of positive type, then it follows from (1.1) and (1.2)

that

T T t

2 2

(2.16) G(E(T)) > G(c) - 0(0) [ |g(E(t))|“at + [ g (E(t))|[ o(t-vE(T)dB(T)|"dt, a.s.

0 0 0

X
for every T > 0, where G(x) = 2 f gly)dy, xe€¢ R.
0

If g'(x) >0, x€ R, then the last term on the right is positive, and can be
dropped from the inequality. In fact, if g(x) = x the Gronwall Inequality can be

used to obtain the estimate
-Zo(0)T
(2.17) le(T)y| > |c|e T A

for every T > 0. The reader can check that for the case o(t) = 0 > 0, b(t) = 0 the

solution of (2.15) is a.s.

b
(2.18) E(t) = ce cosh/gB(t), t > O.
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